Saturday, October 22, 2016

Ecosystem as Place; Ecosystem as Network



The most frequently cited definition of the ecosystem concept owes its origin to Sir Arthur G. Tansley in 1935 (Pickett and Grove 2009).  It has proven to be a very flexible concept, and can be applied to any scale that includes aggregations of physical environment and organisms, plus the interactions among all physical and biological components.  The interactions are just as important as the material, energy, and organisms that exist within ecosystems.  Nevertheless, ecosystems are usually specified as locations or places, that is volumes of some part of the Earth, whether watery, dry land, or wetland (Figure 1).
Figure 1. Experimental watersheds at the Hubbard Brook Ecosystem Study in New Hampshire as ecosystems.  Using the ecosystems as place perspective, the watersheds, with boundaries set by the flow of surface water into the receiving stream, are recognizable ecosystems for the purposes of research and modeling. A photograph of a landscape may represent one or many ecosystems, but it is necessary for the researchers or managers to specify the boundary of each system that the photo might show.


Ecosystem as Interaction

Yet, there is a view of ecosystems that places the interactions themselves as the focus.  This usage is most often heard in the vernacular or in discussions about corporate products and the services they deliver.  Hence, one hears about such things as the "Apple ecosystem," or the "Google ecosystem," or the "health care ecosystem."  Clearly such usages place the connections and flows of information, products, or outcomes at the center of concern.  A bounded and contiguous place is not the point in this use of ecosystem as a network.

Networks are a primary concern of many sciences.  Information sciences, neurosciences, industrial ecology, and studies of governance (Figure 2) often emphasize connections and flows of information, power, influence, materials, and energy.  Traffic engineers and planners envision their topic in terms of networks, although those networks can be seen to serve both close and distant territories.  The network rather than the territory or place is the point.
Figure 2. A network approach to a system.  This is a governance network, showing the connections between government agencies, non-governmental organizations, and community associations concerned with environmental stewardship. The connections represent the sharing of finances, resources, staff, or information. (From Romolini and Grove, 2013.)


So it may seem that the network perspective and the place-delimited view of ecosystem are contradictory and divergent approaches to science.  But this is not the case.  In fact, ecology is a science of interaction.  A traditional definition of ecology states that it is the study of the interaction between organisms and their environments.  However, this definition can be expanded to acknowledge the variety of units or entities other than just organisms that are involved in those interactions.  For example, in the 1950s ecology expanded to consider ecosystems as entities in which biogeochemical processes were the concern.  In the 1980s in the United States, landscape ecology was imported and adapted to emphasize the interactions that involved spatially heterogeneous mosaics at various scales.  Even populations and communities came to be seen as comprising subsets that interacted across space, as in metapopulation or metacommunity theory.  The explicitly interaction-focused definitions of ecology (Box 1) work equally well with the place-based or the network-based approachs to systems.  


Box 1: The Cary Institute Definition of Ecology.  The scientific study of the processes influencing the distribution and abundance of organisms, the interactions among organisms, and the interactions between organisms and the transformation and flux of energy and matter.


A network is also a system, but specifically a system of interaction pathways, mechanisms, or flows.  In other words, a network can be considered to be an infrastructure or a process that takes place over that infrastructure.  Networks as infrastructure may involve materially connected continuous pathways, like roads or wires.  But infrastructural networks can also involve fields, like broadcast via electromagnetic radiation (McGrath and Shane 2012).  Certainly, the underlying fields are continuous, but the function of networks that rely on electromagnetic media seem more discontinuous, since the information can travel great distances with no tangible expression of the network until the message is delivered and decoded.

Joining Networks and Places 

Some theories in urban ecology attempt to deal simultaneously with the place-based and network-based conceptions of systems.  For example, the continuum of urbanity recognizes that local to global connections are key to understanding urban systems now (Seto et al. 2012, Boone et al. 2014).  The fine scale connections can be via road, rail, pipes, fiber, or copper.  Even at regional scales, these physical networks remain important.  Shipping lanes and airline routes are a different kind of infrastructure, but they support regional to global connections in which urban areas partake.  Satellite communications, radio, and wireless act at various scales and can be seen as virtual networks.  The regional and global networks have become a part of daily urban system functioning.   

These networks connect places, and those places embody lifestyles, livelihoods, and environmental conditions that are key drivers of urban ecosystem structure, function, and change.  The continuum of urbanity expresses the seminal role of connections when it acknowledges that rural, urban, and wild places -- ecosystems in the sense of Tansley -- contain and are parts of extensive continuous and virtual networks.  So ecosystems are both place and network.

Literature Cited

Boone, C. G., C. L. Redman, H. Blanco, D. Haase, J. Koch, S. Lwasa, H. Nagendra, S. Pauleit, S. T. A. Pickett, K. C. Seto, and M. Yokohari. 2014. Reconceptualizing land for sustainable urbanity. Pages 313–330in K. C. Seto and A. Reenberg, editors.Rethinking urban land use in a global era. MIT Press, Cambridge.

McGrath, B., and G. Shane. 2012. Introduction: metropolis, megalopolis, and metacity. Page in C. G. Crysler, S. Cairns, and H. Heynen, editors. The SAGE handbook of architectural theory. SAGE, Washington, DC.

Pickett, S. T. A., and J. M. Grove. 2009. Urban ecosystems: what would Tansley do? Urban Ecosystems 12:1–8.


Michele Romolini, J. Morgan Grove. 2013. Assessing and comparing relationships between urban environmental stewardship networks and land cover in Baltimore and Seattle. Landscape and Urban Planning 120:190–207.


Seto, K. C., A. Reenberg, C. G. Boone, M. Fragkias, D. Haase, T. Langanke, P. Marcotullio, D. K. Munroe, B. Olah, and D. Simon. 2012. Urban land teleconnections and sustainability. Proceedings of the National Academy of Sciences of the United States of America 109:7687–7692.

Steward Pickett

Wednesday, October 5, 2016

Emma Rosi-Marshall Becomes Sole Director of BES



Dr. Emma Rosi-Marshall has been co-directing BES with me since 2013.  That year, BES was reviewed by a visiting committee, and the results of that event helped us to shape the renewal process that would culminate with a new proposal in 2016.  After that review, Emma began to take an increasing leadership role in planning for the renewal, and agreed to be the Lead Principal Investigator for BES in its fourth phase.  Consequently, earlier this year we arranged to share the title of Co-Director.  Emma's taking of this mantel entailed a great deal of work and responsibility, and as the founding director of BES, I knew the project was in good hands as we transitioned to her sole leadership.  BES only works because of a dedicated community of researchers, educators, and community engagement professionals.  But Emma's leadership into the future is equally crucial.  The energies and efforts of that marvelous community need to be organized, supported, and guided.  Emma has abundantly demonstrated her ability and enthusiasm to fill those roles for BES as it moves forward.

Now, as BES officially shifts from Phase III to Phase IV, it is time for me to step aside and let the spotlight shine fully on Dr. Rosi-Marshall.  Although technically the official transfer of responsibilities will be on 1 November, it is time to recognize de facto that Dr. Rosi-Marshall is now Director of the Baltimore Ecosystem Study. 

I will stay engaged as Director Emeritus, and will do whatever I can to smooth the transition to Phase IV.  I intend to continue to be productive in and for BES.  I urge all members of the BES community to support Dr. Rosi-Marshall, and to help make this transition as easy as possible.  Continuing the excellent work and improving the theoretical and integrative power of BES are tasks she is excited about, and well prepared for.

With thanks to the current and past members of BES for their support, and with enthusiasm for sharing the work ahead,

Yours,
Steward

Monday, September 19, 2016

How Many Principles of Urban Ecology Are There?


By Steward T.A. Pickett (Cary Institute) & Mary L. Cadenasso (University of California Davis)

In 2008, we published a short paper on the principles of urban ecology (Cadenasso and Pickett 2008).  It was aimed at landscape architects and landscaping practitioners as a part of an "Ecological Landscaping" conference attended mainly by these professionals.  Consequently, we wanted to distill key insights of urban ecological science in digestible form, that could be linked to landscape design and management. 
We generated five general principles to satisfy these intellectual and practical requirements (Table 1).

Table 1: The Five General Principles from Cadenasso and Pickett (2008)
  1. Cities are ecosystems.
  2. Cities are spatially heterogeneous.
  3. Cities are dynamic.
  4. Human and natural processes interact in cities.
  5. Ecological processes are still at work in cities.

We discussed some design, planning, and management implications for each of these principles, to make them useful for the audience.  We believe that such abstractions of the essence of urban ecology have value to researchers and students within this evolving discipline as well.

What's a Principle, Anyway?

The term, principle, is actually rather vague.  A principle can refer to any of the several conceptually oriented components of theory (Pickett et al. 2007; Table 1 in Cadenasso and Pickett, 2008).  For example, a principle can be a concept, a definition used to translate concepts to specific cases, a definition of a quantitative convention within a model, a confirmed empirical generalization, or a law.  Although principles interact with facts and observations, are not the same as individual facts or even collections of facts.  The construction of principles involves some degree of abstraction, idealization, summarization, and the use of relationships among observations or other parts of theory.

To be fair, we didn't specify exactly what kind of conceptual "thing" our five principles were in 2008.  In part, this is because there was no mature, complete, theory with a clear framework that could be used to identify what role the principles played in a larger urban ecology theory.  We believe that's still the case today.

Later, we expanded the roster of principles by digging deeper into mechanisms, the cross-disciplinary nature of urban ecology, and some widespread concerns that would support the linkage of the science to practices well beyond landscaping.  That analysis appeared in a massive encyclopedia (Pickett and Cadenasso 2012), but is being refined as part of a chapter we are writing for a book synthesizing the insights of the Baltimore Ecosystem Study.  In that expanded version, we enumerate 13 principles, providing more detail in several of the statements (Table 2).

Research and management in vacant lots (photo: C. Swan)
Table 2: A more complete and detailed enumeration of principles.  Modified slightly from Pickett and Cadenasso (2012).
  1. Cities and urban areas are human ecosystems in which social-economic and ecological processes feed back to one another.
  2. Urban areas contain remnant or newly emerging vegetated and stream patches that exhibit ecological functions.
  3. Urban flora and fauna are diverse, and this diversity has multiple dimensions (e.g. taxonomy, cladistics, function, geographic origin).
  4. Human values and perceptions are a key link mediating the feedbacks between social and ecological components of human ecosystems.
  5. Ecological processes are differentially distributed across the metropolis and the limitation of services and excess of hazards is often associated with the location of human communities that are poor, discriminated against, or otherwise disempowered.
  6. Urban form is heterogeneous on many scales, and fine-scale heterogeneity is especially notable in cities and older suburbs.
  7. Urban form reflects planning, incidental, and indirect effects of social and environmental decisions.
  8. Urban form is a dynamic phenomenon and exhibits contrasts through time and across regions that express different cultural and economic contexts of urbanization.
  9. Urban designs and development projects at various scales can be treated as experiments, and used to expose the ecological effects of different design and management strategies.
  10. Definition of the boundaries and content of an urban system model is set by the researchers based on their research questions or the spatial scope of its intended application.
  11. Urban comparisons can be framed as linear transects or as abstract gradients, and the abstract comparisons acknowledge the spatial complexity of urban heterogeneity.
  12. Urban land covers and land uses extend into and interdigitate with rural or wild land covers and uses.
  13. The flux of water, including both clean water supply and stormwater management, is of concern to urban and urbanizing areas worldwide, and connects them explicitly to larger regions.

What do Principles Do?

These 13 more detailed principles (Table 2) explain or nest within the five general principles laid out in 2008 (Table 1).  This suggests that there can be levels of generality of principles, with some being very "high level" or general.  In the forthcoming book chapter, we identify a list similar to that in Table 1 as "metaprinciples."  The difference between the highest level metaprinciples, the nested general principles, and then the principles that operate through specific models suggests that the emerging theory of urban ecology has -- like so many theories in science -- a nested hierarchical structure.  Examples of hierarchical theory structures relevant to ecology include that of succession or vegetation dynamics, and of evolution (Pickett et al. 2007, Meiners et al. 2015). 

Indeed, the theory of ecology in general has been presented as a hierarchy of eight very general principles, with nested constituent theories that address more specific ecological topics and processes (Scheiner and Willig 2011).  Within each of these constituent theories there are one or more models that spell out detailed mechanisms, temporal and spatial contingencies, rules and exceptions to the rules.  Some of these model components may legitimately be referred to as principles, though the difference between those and the most general principles of an area may not always be evident in the use of the term. 

The discussion so far shows that principles can
  • Identify the main concerns of a theory.
  • Serve to link general and specific components of theory.
  • Lay out expectations of mechanism or interaction.
  • Summarize patterns of interest to the theory.

How are Principles Arrived At?

Our approach to principles has been from the top down.  That is, we have been motivated by identifying the most general principles of urban theory, and then sorting out how the mechanistic or pattern details fit within those areas.

A bottom-up approach is also possible.  Richard Forman (2016) identifies urban principles using a primarily bottom-up approach.  We interpret his strategy as bottom-up because his list of the descriptors of science appears in this order: concepts, principles, laws, models, hypotheses, and theories.  Principles appear early in what is tacitly an inductive series.  In addition, his list of principles that have developed in urban ecology since its 1970s origin amounts to 90 entries. 

The inductive nature of this list is also strongly suggested by Forman's demonstration that the principles reflect the nature of cities in which the research supporting them was conducted.  Forman lists 16 details of late 19th century cities, and 15 for late 20th century/early 21st century cities, to illustrate the contexts in which the 90 urban principles emerged.

One of Forman's main points is that urban ecology, as a collection of empirical generalizations embodied in his 90 principles, is different than the principles that have emerged from the study of natural areas.  Thus, urban ecology as a body of knowledge summarized in inductive principles is (necessarily) different from other kinds of ecology as bodies of knowledge served by their own inductive principles.  The search for urban ecology principles, on his analysis, appears to be an inductive, place-based pursuit.  This is a perfectly legitimate scientific approach, but the differences between it and the approach of Pickett and Cadenasso (2008; 2012) need to be acknowledged.

The place-based nature of Forman's principles points to an important opportunity for urban ecology as a global science (McHale et al. 2015).  An important point about Forman's inductive approach is that it appears to be biased toward cities of the Global North.  Thus, the trajectories of the industrial revolution, the subsequent development of the sanitary city (Grove 2009), and the nodal role of metropolises in colonial and corporate globalization (Seto et al. 2012) are the boundary conditions for his principles.  The rapidly emerging urban realm of the Global South has a different mixture of contexts (McHale et al. 2015).  The areas undergoing the most rapid urban conversion today may well generate some of the same conditions as have emerged in the cradle of urban ecological science.  However, it is very likely that today's urbanization in Asia and Africa will establish some boundary conditions that are quite different.  An important task of urban ecology will be to identify these differences, and to articulate -- from the top down -- or to discover -- from the bottom up -- empirical generalizations that fit these new situation.
Thirteen ways of looking at urban ecology (apologies to Wallace Stevens), arranged as a nested conceptual hierarchy.

Ecology/Ecologies: One Science, Many Models

The idea of principle is a flexible one, embodying much power in structuring a science, summarizing its insights, and motivating application.  However, the fact that principles point to a hierarchy of generality suggests something about what it means for a subdiscipline or a kind of system to have a "different ecology." 

From the perspective of the definition of ecology as a scientific pursuit, there is only one thing.  There is only one ecology: The scientific study of the processes influencing the distribution and abundance of organisms, the interactions among organisms, and the interactions between organisms and the transformation and flux of energy and matter.  Urban ecology merely adds an emphasis on human ecosystems in general, which include organisms, the physical environment and conditions, the human population and its social structures and processes, and the built and technological components (Cadenasso et al. 2006, Pickett and Grove 2009).  So there is only one ecology -- as a way to pursue science -- although there are many kinds of system it can apply to.

From the perspective of ecology as a body of knowledge, however, there can be several kinds.  These "ecologies" are different specific models or families of model, or sets of generalizations about kinds of systems or historical periods.  This is the analytic home for Forman's (2016) conclusion that urban ecology is different from the ecology of wild places.  What this means is that the bodies of facts, empirical generalizations -- or principles in his parlance -- are different when they emerge from urban systems than when they emerge from wilder systems.

We hope that this discussion clarifies two things.  Urban ecology, which focuses on inhabited and densely built systems, and other kinds of ecology, which focus on uninhabited but in some cases managed or otherwise anthropogenically impacted, are the same as scientific process, and from the perspective of generalizable drivers (e.g. Scheiner and Willig 2011).  They are different in terms of the facts and generalizations that apply within their domains.  Knowing how to array research and conclusions across conceptual gradients connecting built and uninhabited landscapes, is as Forman (2016) suggests, a crucial frontier for ecological science in a changing, connected world.
 

And the Envelope, Please!

To answer the question posed in our title, there are roughly a half dozen principles of urban ecology when one takes a combined top-down and empirical approach; but there are 90 when one takes a bottom-up approach to empirical summarization.  These approaches have complementary roles to play in advancing urban ecology, and reconciling them points to a nested hierarchy as a way to promote integrated urban ecological theory.

Literature Cited

Cadenasso, M. L., and S. T. A. Pickett. 2008. Urban principles for ecological landscape design and management: scientific fundamentals. Cities and the Environment 1:Article 4.  http://digitalcommons.lmu.edu/cate/vol1/iss2/4

Cadenasso, M. L., S. T. A. Pickett, and J. M. Grove. 2006. Integrative approaches to investigating human-natural systems: the Baltimore ecosystem study. Natures Sciences Societes 14:4–14.

Forman, R. T. T. 2016. Urban ecology principles: are urban ecology and natural area ecology really different? Landscape Ecology:1–10. DOI:10.1007/s10980-016-0424-4

Grove, J. M. 2009. Cities: Managing Densely Settled Social–Ecological Systems. Pages 281–294in F. S. Chapin, G. P. Kofinas, and C. Folke, editors. Principles of Ecosystem Stewardship: Resilience-Based Natural Resource Management in a Changing World.

McHale, M. R., S. T. A. Pickett, O. Barbosa, D. N. Bunn, M. L. Cadenasso, D. L. Childers, M. Gartin, G. R. Hess, D. M. Iwaniec, T. McPhearson, M. N. Peterson, A. K. Poole, L. Rivers, S. T. Shutters, and W. Zhou. 2015. The new global urban realm: complex, connected, diffuse, and diverse social-ecological systems. Sustainability 7:5211–5240.

Meiners, S. J., M. L. Cadenasso, and S. T. A. Pickett. 2015. An integrative approach to successional dynamics: Tempo and mode in vegetation change. Cambridge University Press, New York.

Pickett, S. T. A., and M. L. Cadenasso. 2012. Urban ecology. Pages 273–301 in R. Leemans, editor. Ecological systems: selected entries from the encyclopedia of sustainability science and technology. Springer, New York.

Pickett, S. T. A., and J. M. Grove. 2009. Urban ecosystems: what would Tansley do? Urban Ecosystems 12:1–8.

Pickett, S. T. A., J. Kolasa, and C. G. Jones. 2007. Ecological Understanding. Academic Press, San Diego.

Scheiner, S. M., and M. R. Willig, editors. 2011. The theory of ecology. University of Chicago Press, Chicago.

Seto, K. C., A. Reenberg, C. G. Boone, M. Fragkias, D. Haase, T. Langanke, P. Marcotullio, D. K. Munroe, B. Olah, and D. Simon. 2012. Urban land teleconnections and sustainability. Proceedings of the National Academy of Sciences of the United States of America 109:7687–7692.

Friday, July 29, 2016

Urban Ecology at the 2016 Annual Meeting of the Ecological Society of America

The meeting takes place in Ft. Lauderdale, Florida, from 7-12 August. The meeting theme is Novel Ecosystems in the Anthropocene. Certainly this theme is right in our urban niche!  Details of the meeting can be found at http://esa.org/ftlauderdale/


The biggest gathering of professional ecologists each
ESA 2016 Annual Meeting logo
year is the Annual Meeting of the Ecological Society of America. This year, following the recent trends, there will be a lot of urban ecology -- symposium talks, contributed sessions, posters, and mixers.

Myla Aronson, Chair of the Urban Ecology Section, has compiled a list of urban activities, which is insert below.  We have added a couple symposium talks that were not tagged as urban in the ESA program.  This diversity of activities should tempt people to participate.  Hope to see you there!


Urban Sessions at Ecological Society of America, Annual Meeting 2016

Business meeting:
Tuesday, August 9, 2016, 12:00 PM-1:00 PM, 318, Ft Lauderdale Convention Center

ESA Joint Section Mixer (Agroecology, Applied, Asian, Early Career, Education, Human, Inclusive, International, Justice, Long-term Studies, Rangeland, TEK, and Urban)
Tuesday, August 9, 2016: 6:30 PM-8:00 PM, Grand Floridian Blrm H, Ft Lauderdale Convention Center

Symposiums
SYMP 15: Urban Ecology: A Socio-Ecological Insight from Tropical Regions and Latin America
Wednesday, August 10, 2016: 1:30 PM-5:00 PM, Grand Floridian Blrm D, Ft Lauderdale Convention Center

SYMP 19: Novel Ecosystems in Cities: Adaptation to Urban Conditions
Thursday, August 11, 2016: 1:30 PM-5:00 PM, Grand Floridian Blrm B, Ft Lauderdale Convention Center 

Two urban talks in a "non-urban" symposium on Human Ecology, Human Economy: Towards Good Governance of the Anthropocene https://eco.confex.com/eco/2016/webprogram/Session11685.html 

Tuesday 10:10 AM B. Larry Li, University of California Riverside
Building the three pillars in harmony: The case of urban development in China  
Tuesday 10:40 a.m. Steward T.A. Pickett, Cary Institute of Ecosystem Studies; Geoffrey Buckley, Ohio University The legacy of past paradigms of governance and the challenge for the future

Organized Oral Sessions

OOS 29: Urban Woodlands: Remnants, Regeneration and Restoration
Thursday, August 11, 2016: 8:00 AM-11:30 AM, Grand Floridian Blrm G, Ft Lauderdale Convention Center

OOS 40: From Studying to Shaping: Reframing Urban Ecology into a Proactive Science Through Pedagogy, Practice and Research
Friday, August 12, 2016: 8:00 AM-11:30 AM, Grand Floridian Blrm G, Ft Lauderdale Convention Center

Contributed Oral Sessions

COS 12: Sustainability: Urban Systems
Monday, August 8, 2016: 1:30 PM-5:00 PM, 222/223, Ft Lauderdale Convention Center

COS 25: Urban Ecosystems I
Tuesday, August 9, 2016: 8:00 AM-11:30 AM, 222/223, Ft Lauderdale Convention Center

COS 37: Urban Ecosystems II
Tuesday, August 9, 2016: 1:30 PM-5:00 PM, Floridian Blrm D, Ft Lauderdale Convention Center

COS 49: Urban Ecosystems III
 Wednesday, August 10, 2016: 8:00 AM-11:30 AM, Floridian Blrm D, Ft Lauderdale Convention Center


Poster Sessions
PS 32: Urban Ecology
Thursday, August 11, 2016: 4:30 PM-6:30 PM, ESA Exhibit Hall, Ft Lauderdale Convention Center

PS 57: Latebreaking: Urban Ecosystems
Friday, August 12, 2016: 8:30 AM-10:30 AM, ESA Exhibit Hall, Ft Lauderdale Convention Center


Workshops
WK 43: Practicing Ecology in Novel Ecosystems: Sharing Lessons Learned from Urban Field Work on Private Property
Thursday, August 11, 2016: 11:30 AM-1:15 PM, Grand Floridian Blrm A, Ft Lauderdale Convention Center


Field Trips
FT 7: A Crosstown Walk on 7th Street: A Socioeconomic Gradient
Thursday, August 11, 2016: 8:00 AM-11:30 AM, Shuttle Drop-off outside Lobby A area, Ft Lauderdale Convention Center