A special guest post by Prof. Grace S. Brush, Johns Hopkins University.
My last post discussed how the role of people in shaping the swampy systems of the Everglades had been erased. That erasure paralleled how biophysical processes had in the past been ignored in thinking about urban systems. Because Baltimore is a coastal city, it occurred to me while I was writing that post, that there were insights about the role of swamps and wetlands in the history of our city that would be worth exploring.
Prof. Grace Brush |
THE
VERY WET PRE-COLONIAL LANDSCAPE OF THE CHESAPEAKE BAY, by Prof G.S. Brush
A prevailing question today, as the
historical fish harvests of the Chesapeake
and other aquatic systems are greatly diminished, is “What was the land really
like, when the water was clear and seafood abundant?
Pollen and seed records in dated sediment
cores indicate a forested landscape 300 years ago with most herbaceous plants
belonging to wetland species.
Pre-colonial soils exposed along river cuts contain water lily pollen.
Sedge seeds were common in the sediment.
Rainfall runoff was minimal in a
pervious forest floor rich in leaf
litter and decomposing wood. Hence
groundwater was constantly recharged, creating wet soggy ground. Seeds of submerged macrophytes in cores
collected in present day tidal fresh water marshes record open water at those
locations in pre-colonial time.
Historical maps published in 1897 show springs
at the mouths of many tributaries. Druid Hill Park in Baltimore
City has structures built
for drinking water for horses at sites where ground water surfaced. They are now dry. Upland trees such as black
locust and species of oak are replacing wetland species like green ash and box
elder on floodplains of many streams.
This phenomenon, which we have described as a “hydrological drought” is
being reported in various parts of Eastern and Midwestern USA. All through the watershed, a very large
beaver population created many marshes behind the numerous dams they built on
inland streams All of the evidence
points to a wet environment characterized by many marshes, swamps and ponds.
Beaver landscape (Morgan 1867) |
Baltimore, 1792, with agricultural clearing. |
Within a very short time following
colonization, much of the watershed was converted to agricultural land,
accomplished by cutting down the trees and draining and filling in wetlands and
marshes. This conversion was facilitated
by the near extinction of the beaver population by the fur trade in the 18th
century. The soil that eroded from the less
pervious agricultural land -- along with fertilizers -- was transported by
streams to estuarine waters. Excess
nitrogen, a major constituent of fertilizers, is particularly harmful because
of its many potential transformations in the soil and water, making it
available for generations of plant growth.
It can be removed from the system only by denitrification, where
nitrogenous compounds are converted to elemental nitrogen and returned to the
atmosphere. Denitrification occurs
almost entirely in wet, anaerobic environments, such as marshes and swamps. The pre-colonial landscape, which was ideally
suited for denitrification, was destroyed as nitrogen loads and sources
increased.
Baltimore 1801, showing extensive, wet lowlands. |
Along with overfishing, the
transformation of the landscape from wet to dry contributed directly to the
fishery decrease in the Chesapeake Bay, as
nitrogen not recycled to the atmosphere became a major contributor to increased
eutrophication, anoxia and habitat loss in the Bay ecosystem.
Grace S. Brush, PhD, Department of Geography and Environmental Engineering, Johns Hopkins University, Baltimore MD
The map of the beaver dams is from Morgan, L. H. 1867. The American beaver and his works. New York: Burt Franklin (reprinted 1970).
No comments:
Post a Comment